Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
ACS Chem Neurosci ; 15(6): 1276-1285, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38454572

Glutamate, the major excitatory neurotransmitter in the vertebrate brain, exerts its functions through the activation of specific plasma membrane receptors and transporters. Overstimulation of glutamate receptors results in neuronal cell death through a process known as excitotoxicity. A family of sodium-dependent glutamate plasma membrane transporters is responsible for the removal of glutamate from the synaptic cleft, preventing an excitotoxic insult. Glial glutamate transporters carry out more than 90% of the brain glutamate uptake activity and are responsible for glutamate recycling through the GABA/Glutamate/Glutamine shuttle. The aryl hydrocarbon receptor is a ligand-dependent transcription factor that integrates environmental clues through its ability to heterodimerize with different transcription factors. Taking into consideration the fundamental role of glial glutamate transporters in glutamatergic synapses and that these transporters are regulated at the transcriptional, translational, and localization levels in an activity-dependent fashion, in this contribution, we explored the involvement of the aryl hydrocarbon receptor, as a model of environmental integrator, in the regulation of the glial sodium-dependent glutamate/aspartate transporter. Using the model of chick cerebellar Bergmann glia cells, we report herein that the aryl hydrocarbon receptors exert a time-dependent decrease in the transporter mRNA levels and a diminution of its uptake activity. The nuclear factor kappa light chain enhancer of the activated B cell signaling pathway is involved in this regulation. Our results favor the notion of an environmentally dependent regulation of glutamate removal in glial cells and therefore strengthen the notion of the involvement of glial cells in xenobiotic neurotoxic effects.


Aspartic Acid , Receptors, Aryl Hydrocarbon , Aspartic Acid/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Glutamate Plasma Membrane Transport Proteins/metabolism , Amino Acid Transport System X-AG/metabolism , Sodium/metabolism , Neuroglia/metabolism , Glutamic Acid/metabolism , Cells, Cultured
2.
Neurotox Res ; 41(6): 681-697, 2023 Dec.
Article En | MEDLINE | ID: mdl-37776476

Despite sustained efforts to treat neurodegenerative diseases, little is known at the molecular level to understand and generate novel therapeutic approaches for these malignancies. Therefore, it is not surprising that neurogenerative diseases are among the leading causes of death in the aged population. Neurons require sophisticated cellular mechanisms to maintain proper protein homeostasis. These cells are generally sensitive to loss of gene expression control at the post-transcriptional level. Post-translational control responds to signals that can arise from intracellular processes or environmental factors that can be regulated through RNA-binding proteins. These proteins recognize RNA through one or more RNA-binding domains and form ribonucleoproteins that are critically involved in the regulation of post-transcriptional processes from splicing to the regulation of association of the translation machinery allowing a relatively rapid and precise modulation of the transcriptome. Neurotoxicity is the result of the biological, chemical, or physical interaction of agents with an adverse effect on the structure and function of the central nervous system. The disruption of the proper levels or function of RBPs in neurons and glial cells triggers neurotoxic events that are linked to neurodegenerative diseases such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), fragile X syndrome (FXS), and frontotemporal dementia (FTD) among many others. The connection between RBPs and neurodegenerative diseases opens a new landscape for potentially novel therapeutic targets for the intervention of these neurodegenerative pathologies. In this contribution, a summary of the recent findings of the molecular mechanisms involved in the plausible role of RBPs in RNA processing in neurodegenerative disease is discussed.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Aged , Neurodegenerative Diseases/metabolism , RNA-Binding Proteins/metabolism , Neurons/metabolism , Amyotrophic Lateral Sclerosis/metabolism
3.
Biomed Res Int ; 2023: 7389508, 2023.
Article En | MEDLINE | ID: mdl-36760476

Neurodegenerative processes encompass a large variety of diseases with different pathological patterns and clinical features, such as Alzheimer's and Parkinson's diseases. Exposure to metals has been hypothesized to increase oxidative stress in brain cells leading to cell death and neurodegeneration. Neurotoxicity of metals has been demonstrated by several in vitro and in vivo experimental studies, and most probably, each metal has its specific pathway to trigger cell death. As a result, exposure to essential metals, such as manganese, iron, copper, zinc, and cobalt, and nonessential metals, including lead, aluminum, and cadmium, perturbs metal homeostasis at the cellular and organism levels leading to neurodegeneration. In this contribution, a comprehensive review of the molecular mechanisms by which metals affect microglia physiology and signaling properties is presented. Furthermore, studies that validate the disruption of microglia activation pathways as an essential mechanism of metal toxicity that can contribute to neurodegenerative disease are also presented and discussed.


Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , Microglia/metabolism , Metals/toxicity , Iron/toxicity , Zinc
4.
Sci Rep ; 12(1): 20839, 2022 12 02.
Article En | MEDLINE | ID: mdl-36460706

DNA methylation is a key epigenetic modification to regulate gene expression in mammalian cells. Abnormal DNA methylation in gene promoters is common across human cancer types. DNMT3B is the main de novo methyltransferase enhanced in several primary tumors. How de novo methylation is established in genes related to cancer is poorly understood. CpG islands (CGIs), common sequences, and transcription factors (TFs) that interact with DNMT3B have been associated with abnormal de novo methylation. We initially identified cis elements associated with DNA methylation to investigate the contribution of DNMT3B overexpression to the deregulation of its possible target genes in an epithelial cell model. In a set of downregulated genes (n = 146) from HaCaT cells with DNMT3B overexpression, we found CGI, common sequences, and TFs Binding Sites that interact with DNMT3B (we called them P-down-3B). PPL1, VAV3, IRF1, and BRAF are P-down-3B genes that are downregulated and increased their methylation in DNMT3B presence. Together these findings suggest that methylated promoters aberrantly have some cis elements that could conduce de novo methylation by DNMT3B.


DNA Methylation , Epigenesis, Genetic , Humans , Animals , CpG Islands , Binding Sites , Methyltransferases , Mammals
5.
Clin Epigenetics ; 14(1): 4, 2022 01 06.
Article En | MEDLINE | ID: mdl-34991696

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is the main cause of cervical cancer, but additional alterations are necessary for its development. Abnormal DNA methylation has an important role in the origin and dissemination of cervical cancer and other human tumors. In this work, we analyzed the methylation of eight genes (AJAP1, CDH1, CDH13, MAGI2, MGMT, MYOD1, RASSF1A and SOX17) that participate in several biological processes for the maintenance of cell normality. We analyzed DNA methylation by methylation-specific PCR (MSP) and HPV infection using the INNO­LiPA genotyping kit in 59 samples diagnostic of normal cervical tissue (non-SIL), 107 low-grade squamous intraepithelial lesions (LSILs), 29 high-grade squamous intraepithelial lesions (HSILs) and 51 cervical cancers (CCs). RESULTS: We found that all samples of LSIL, HSIL, and CC were HPV-positive, and the genotypes with higher frequencies were 16, 18, 51 and 56. In general, the genes analyzed displayed a significant tendency toward an increase in methylation levels according to increasing cervical lesion severity, except for the CDH13 gene. High CpG island methylator phenotype (CIMP) was associated with a 50.6-fold (95% CI 4.72-2267.3)-increased risk of HSIL and a 122-fold risk of CC (95% CI 10.04-5349.7). CONCLUSIONS: We found that CIMP high was significantly associated with HSIL and CC risk. These results could indicate that CIMP together with HR-HPV infection and other factors participates in the development of HSIL and CC.


CpG Islands/genetics , DNA Methylation/genetics , Genetic Predisposition to Disease , Phenotype , Squamous Intraepithelial Lesions of the Cervix/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/physiopathology , Adult , Cell Line , Female , Gene Expression Regulation, Neoplastic , Genotype , Humans , Keratinocytes , Mexico , Middle Aged , Risk Factors
6.
J Inflamm Res ; 14: 6587-6600, 2021.
Article En | MEDLINE | ID: mdl-34908860

PURPOSE: We aim to identify Th1 and Th2 cell clusters in young subjects, including their clinical and metabolic characteristics and the Th1/Th2 balance. PATIENTS AND METHODS: A total of 100 participants were included. The frequencies of Th1 and Th2 cells in peripheral blood were determined by flow cytometry. Serum C-reactive protein was measured using a turbidimetric assay, and insulin levels were quantified with an enzyme-linked immunosorbent assay. Circulating cytokine levels were analyzed using a multiplex system. RESULTS: A cluster analysis was performed to determine the Th1/Th2 balance in a group of young people, and 3 clusters were formed with the following characteristics: 1) subjects with a higher prevalence of hyperglycemia (38%), dyslipidemia (38-75%), and insulin resistance (50%), as well as a higher percentage of Th1 cells and Th1/Th2 ratio, including elevated IFN-É£ levels; 2) subjects with a lower prevalence of hyperglycemia (23%) and insulin resistance (15.4%), but a higher prevalence of dyslipidemia (8-85%) with a predominance of Th2 cells, and lower Th1/Th2 ratio; 3) subjects with a lower prevalence of hyperglycemia (6%), insulin resistance (41%), and dyslipidemia (10-63%), as well as a balance of Th1 and Th2 cells and lower Th1/Th2 ratio, including low IFN-É£ levels. Positive correlations between Th1 cells with IFN-γ, IL-12, and IL-1ß and between Th2 cells with IFN-γ, IL-2, and IL-4 were found (p < 0.05). A significant increase in Th1 cells was observed in the presence of hyperglycemia and high LDL-C levels, as well as increased Th2 cells in the absence of abdominal obesity and high blood pressure, including low HDL-C levels. The Th1/Th2 ratio was higher in the group with high cardiometabolic risk (p = 0.03). CONCLUSION: Th1/Th2 balance is related to metabolic abnormalities that may occur in young population, and thus the timely identification of different phenotypes may help predict an increased cardiometabolic risk.

7.
Genes (Basel) ; 11(11)2020 11 12.
Article En | MEDLINE | ID: mdl-33198240

DNA methyltransferases (DNMTs) play an essential role in DNA methylation and transcriptional regulation in the genome. DNMTs, along with other poorly studied elements, modulate the dynamic DNA methylation patterns of embryonic and adult cells. We summarize the current knowledge on the molecular mechanism of DNMTs' functional targeting to maintain genome-wide DNA methylation patterns. We focus on DNMTs' intrinsic characteristics, transcriptional regulation, and post-transcriptional modifications. Furthermore, we focus special attention on the DNMTs' specificity for target sites, including key cis-regulatory factors such as CpG content, common motifs, transcription factors (TF) binding sites, lncRNAs, and histone marks to regulate DNA methylation. We also review how complexes of DNMTs/TFs or DNMTs/lncRNAs are involved in DNA methylation in specific genome regions. Understanding these processes is essential because the spatiotemporal regulation of DNA methylation modulates gene expression in health and disease.


DNA Methylation , DNA Modification Methylases/genetics , Histone Code/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics , 5-Methylcytosine/metabolism , Animals , CpG Islands , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Modification Methylases/metabolism , Humans , Promoter Regions, Genetic
...